Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Estimation of climate change in the 21st century in North China by RegCM4
CHEN Ying, ZHANG Dongfeng, WANG Lin, LIU Yueli, WANG Dayong
Journal of Arid Meteorology    2022, 40 (1): 1-10.   DOI: 10.11755/j.issn.1006-7639(2022)-01-0001
Abstract524)   HTML230)    PDF(pc) (8036KB)(1639)       Save

Based on dynamic downscaling simulation data of temperature and precipitation by the regional climate model version 4 (RegCM4) from National Climate Center under the representative concentration pathways 4.5 (RCP4.5) and RCP8.5 scenarios, the simulation ability of RegCM4 was tested in baseline period (1986-2005). And on this basis, the climate change was analyzed in North China in future of the 21st century. The results show that RegCM4 had a better performance in simulating air temperature and precipitation in North China in baseline period. The change of surface air temperature, precipitation, consecutive dry days (CDD) and strong precipitation (R95p) under RCP4.5 and RCP8.5 scenarios will increase gradually in North China in future of the 21st century, but their changes under RCP4.5 scenario will be obviously less than those under RCP8.5 scenario. Under the higher emission scenario of RCP8.5, the annual mean air temperature will rise 1.77, 3.44 and 5.82 ℃ in near term (2021-2035), medium term (2046-2065) and long term (2080-2098) of the 21st century, the annual mean precipitation will increase 8.1%, 14% and 19.3%, CDD will reduce 3, 3 and 12 d, and R95p will increase 30.8%, 41.9% and 69.8%, respectively. In space, the mean air temperature in the whole year, winter and summer in North China will rise consistently in future of the 21st century, and the warming in summer will be the most, while the mean precipitation in the whole year, winter and summer will increase in most regions, and the increase of precipitation in winter will be the most. Meanwhile, CDD will decrease except in Shanxi and Beijing-Tianjin-Hebei areas in near term and medium term, while R95p will increase, which indicated that the drought events will reduce and the extreme precipitation will increase in the 21st century.

Table and Figures | Reference | Related Articles | Metrics